Global EditionASIA 中文雙語Fran?ais
World
Home / World / Americas

New fuel-delivery route for cells identified: study

Xinhua | Updated: 2019-01-08 02:37
Share
Share - WeChat

CHICAGO -- US researchers have identified a previously unknown route for cellular fuel delivery. The finding could shed light on the process of aging and the chronic diseases that often accompany it.

Previous study shows that the levels of a molecule called nicotinamide adenine dinucleotide (NAD) in tissues throughout the body decrease with age, and NAD manufacture in cells begins with a precursor molecule called nicotinamide mononucleotide (NMN).

By experimenting in cells and mice, the researchers have identified and verified that a protein called Slc12a8 is in fact the mystery transporter, and Slc12a8 requires the presence of sodium ions to transport NMN into cells, showed the study published Monday in the inaugural issue of the journal Nature Metabolism.

The researchers further found that cells dial up the expression of the Slc12a8 gene when NAD levels fall. When they deliberately lowered NAD levels inside cells and then gave NMN to compensate, the resulting NAD manufactured in the cell overshot the amount they expected to see.

This suggested that cells don't just passively accept loss of NAD; they work to maintain their fuel supply by increasing amounts of the NMN transporter, thereby increasing their capacity to bring the raw materials required to make NAD into the cell.

So aging cells can, to a degree, compensate for a depleted fuel supply. When NAD inside the cell drops, cells make more NMN transporters, increasing the amount of NMN they can bring inside.

The researchers highlighted the importance of the interaction of NMN and its transporter, and suggested a role for both supplementing NMN and enhancing the function of Slc12a8, the NMN transporter, in therapies.

Previous study has shown that giving NMN to older mice has beneficial effects on metabolism throughout the body, including positive effects in skeletal muscle, liver function, bone density, eye function, insulin sensitivity, immune function, body weight and activity levels. Studies also found that the benefits of supplementing NMN were seen only in older mice. Young, healthy mice likely have no trouble manufacturing sufficient NAD.

"What may be important in a future strategy is the combination of giving NMN along with stimulating the transport of NMN into cells," said Shin-ichiro Imai, a professor of developmental biology at Washington University School of Medicine in St. Louis. "With aging, we see a bottleneck in NAD production. If we can give NMN and aid its transport into cells, it may be a way to bypass the bottleneck."

The technology has been licensed to a Japanese company that is working on new therapies targeting the chronic diseases of aging.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 亚洲午夜无码久久久久| 国产亚洲真人做受在线观看| 三上悠亚精品一区二区久久| 欧美国产日本高清不卡| 免费黄色软件在线观看| 高潮毛片无遮挡高清免费| 国产肉丝袜在线观看| 一级黄色在线视频| 日韩在线视频观看| 亚洲欧洲日产国码一级毛片| 精品国产免费人成网站| 国产又黄又爽又刺激的免费网址| 99re6在线视频精品免费下载| 成人欧美一区二区三区在线| 久久精品这里热有精品| 欧美高清国产在线观看| 午夜a一级毛片一.成| 野花社区在线观看www| 国产精品三级国语在线看| avtt2015天堂网| 成人永久福利在线观看不卡| 久久精品国产99久久丝袜| 欧美日韩亚洲国产综合| 伊人婷婷综合缴情亚洲五月| 色吊丝中文字幕| 国产大陆亚洲精品国产| 1000部国产成人免费视频| 天堂а√在线地址中文在线| 中文字幕一区二区视频| 日本高清无卡码一区二区久久| 亚洲成a人片在线观看播放| 男女后进式猛烈XX00动态图片| 国产乱码精品一区二区三| 欧美第一页浮力影院| 国产高清一级毛片在线不卡 | 精品精品国产欧美在线观看 | 中文字幕在线电影| 日韩一品在线播放视频一品免费 | 国产精品免费看久久久| 99视频精品在线| 少妇大叫太大太爽受不了|