Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Chinese research team launches clinical trial for invasive brain-computer interface

Xinhua | Updated: 2025-06-15 07:22
Share
Share - WeChat
Doctors conduct the clinical trial of the invasive brain-computer interface in East China's Shanghai, March 25, 2025. [Photo/CEBSIT at CAS/Handout via Xinhua]

SHANGHAI -- A Chinese man who lost all four limbs in a high-voltage electrical accident 13 years ago can now play chess and racing games using only his mind, after a revolutionary procedure in Shanghai in which a brain-computer interface (BCI) device was implanted in his brain.

This is not a science-fiction premise, but China's first-in-human clinical trial of an invasive BCI, and an important step in the transition of this technology from laboratory research to clinical application.

The trial is a collaboration between research teams from the Center for Excellence in Brain Science and Intelligence Technology (CEBSIT) at the Chinese Academy of Sciences (CAS), and Huashan Hospital affiliated with Fudan University. Their work makes China the second country, after the United States, to advance invasive BCI technology to the clinical trial stage.

Since the device was implanted in March 2025, it has operated stably in the patient's brain, with no infection or electrode failure reported to date, according to the research team.

The team hopes the system could enter the market after receiving regulatory approval in 2028, with the potential to enhance the quality of life of millions of patients suffering from complete spinal cord injuries, double upper limb amputations, and amyotrophic lateral sclerosis.

BCI technology establishes a direct communication and control connection between the brain and the external world. It is not only a window to understanding the brain's information processing mechanisms but also a direction and means for treating diseases and exploring the next generation of human-computer interaction modes, said Shi Yongyong, deputy director of the CEBSIT.

Reading the information of electrical signals from the brain and using it to control external devices is a field of research with a history of two to three decades. However, in the past, bulky instruments were used, said Pu Muming, an academician of the CAS.

The process of miniaturizing and systematizing the large device is extremely challenging, Pu said.

The ultra-flexible neural electrodes developed by the team are incredibly fine, measuring only about 1 percent of the diameter of a human hair, according to Zhao Zhengtuo, head of the research team.

"This allows brain cells to barely 'perceive' their presence, minimizing brain tissue damage," Zhao said.

These electrodes enable high-density, large-scale, high-throughput, and long-term stable in vivo neural signal acquisition. They've been tested in rodents, non-human primates, and then the human brain, Zhao said.

The invasive BCI system developed by the team can stably acquire clear single-neuron signals. The implant measures 26 mm in diameter and less than 6 mm in thickness, roughly the size of a coin, making it half the size of the product developed by Elon Musk's Neuralink, according to Zhao.

Real-time decoding is a key of the BCI technology. This system completes the entire process of neural signal extraction, movement intent interpretation, and control command generation within tens of milliseconds, faster than the blink of an eye, said Li Xue, another leading researcher of the team.

Prior to human trials, the system's safety and functionality were validated in macaque monkeys. Following implantation surgery, the system operated stably with no infection or electrode failure observed. The implant was also safely replaced in the monkey experiment, proving feasibility of upgrading the device, Li added.

The implantation surgery utilizes minimally invasive neurosurgical techniques, effectively reducing risks and shortening recovery time. The operational procedure facilitates broader application, said Lu Junfeng, principal investigator of the team from the Huashan Hospital.

Accurate electrode placement is vital. Using multiple positioning methods and high-precision navigation, Lu's team implanted the ultra-flexible electrodes into the designated area of the patient's motor cortex.

The entire procedure was accurate to the millimeter, maximizing safety and efficacy, Lu said.

Currently, there are mainly three BCI technological routes: non-invasive, semi-invasive, and invasive. Non-invasive methods are entirely non-surgical, while semi-invasive and invasive approaches involve surgical procedures.

To explain the difference of these technical approaches, Lu gave an analogy: "It is like listening to a live broadcast of a soccer game. Non-invasive devices are like microphones placed outside the stadium -- people can judge the game's progress by the cheers but cannot accurately know what is happening on the field. Semi-invasive devices are like microphones hung above inside the stadium, allowing people to understand the game more clearly. Invasive devices are like microphones attached to the players and spectators, enabling audience to hear very clearly what the players and spectators are saying and to understand more accurately what is happening on the field."

Next, the team aims to enable the patient to control a robotic arm, allowing him to grasp and hold objects like cups. They will also explore controlling complex devices such as robot dogs and embodied intelligent robots to expand the life boundaries of the patient.

1 2 3 Next   >>|
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 日本高清在线不卡| 看黄软件免费看在线观看| 国内精品在线视频| 久久人人爽人人爽人人片dvd| 猫扑两性色午夜视频免费| 国产又色又爽在线观看| 97视频免费观看2区| 新国产三级在线观看播放| 亚洲国产一区二区a毛片| 精品一区二区三区在线观看视频 | 国产成人精品综合在线| baoyu122.永久免费视频| 日本xxxⅹ色视频在线观看网站| 亚洲国产美女福利直播秀一区二区| 精品国产免费观看久久久| 国产在线无码精品电影网| 91情国产l精品国产亚洲区| 成人性视频在线| 久久精品国产亚洲av瑜伽| 欧美第一页在线| 免费日产乱码卡一卡| 蜜桃麻豆WWW久久囤产精品| 国产精品国产午夜免费福利看| 久久久久亚洲av成人网| 欧美zooz人禽交免费| 亚洲色大成网站www永久男同| 老师的被到爽羞羞漫画| 国产欧美综合精品一区二区| 99久9在线|免费| 少妇一晚三次一区二区三区| 久久国产精品99精品国产| 欧美xxx高清| 亚洲精品无码久久久久AV麻豆| 精品日产一区二区三区| 国产动作大片中文字幕| www.九色视频| 少妇人妻综合久久中文字幕 | 九九九国产视频| 欧美特黄一片aa大片免费看| 全彩漫画口工令人垂延三尺| 色屁屁www欧美激情在线观看|